Острее шпаги - Страница 20


К оглавлению

20

Оба француза сели за стол у стрельчатого окна, защищенного от солнца пышной зеленью сада. Здесь жара не ощущалась такой невыносимой, как в другом месте.

— Итак, с чем же вы, мой друг, хотите познакомить меня? Из-за чего вы жалели о нашей размолвке?

— Прежде всего с тем, что формула Пифагора заключает в себе строго организованные ряды простейших пифагоровых троек, то есть значений сторон прямоугольных треугольников, не имеющих общего делителя.

— Любопытно. Как же вы это доказываете, мой друг?

— Позвольте и мне, уважаемые гости Аль-Искандарии, ознакомиться с выводами молодого ученого, — попросил вошедший вслед за Пьером и Декартом хозяин дома.

— Охотно, уважаемый Мохаммед эль Кашти, тем более что вы послужили толчком для всех находок, которые я могу показать, — живо отозвался Пьер Ферма.

— О, слава аллаху, моя помощь в этом высоком деле ничтожно мала, я обратил ваше внимание лишь на то, чего не видел сам.

— Я сожалею, что не пришел извиниться сразу, тогда мы смогли бы вместе повидать необычный орнамент, о котором я уже услышал через Огюста, но я надеюсь, что наш друг возместит упущенное, — произнес Декарт, поклонившись в сторону Пьера Ферма.

И тот стал увлеченно показывать сделанные им преобразования формулы Пифагора.

Декарт внимательно выслушал Пьера Ферма, взял в руки составленную им таблицу, лицо его из грозного стало сосредоточенным, потом он горько усмехнулся:

— Друг мой, боюсь разочаровать вас, но стоило ли вам вкладывать столько труда в «изобретение колесницы», известной еще при фараонах?

— Вы правы, Рене, очевидно, при фараонах жрецы бога Тота знали эти ряды, но разве не наш долг вернуть людям утраченные знания?

— Вы не поняли меня, друг мой. Я применил метафору о колеснице, имея в виду, что она известна была и древним римлянам, даже в наше время на ее основе созданы кареты. Просто вам нет надобности применять свой математический дар для вычисления сторон приевшихся всем прямоугольников, поскольку древние оставили нам изящные формулы, дающие значения всех возможных пифагоровых троек. — И он размашисто написал на листе несколько формул. — Их связывают чуть ли не с Платоном, их можно найти в X книге «Начал» Евклида.

— Простите, что я вступаю в ваш высоконаучный разговор, почтенные знатоки чисел, — вмешался звездочет, — но арабской науке действительно известны эти древние формулы, правда, в несколько другом написании. Однако, к сожалению, до нас не дошел их вывод. Впрочем, в том, что они дают верный результат, я имел, по воле аллаха, возможность убедиться всякий раз, когда их применял, подобно тому, как это делал сам Диофант.

Пьер Ферма нахмурился, пристально глядя на свои и написанные Декартом формулы:

— Они выводятся очень просто, почтенные господа, из тех самых выражений, которые позволили мне составить таблицу. — И Пьер Ферма показал, как удивительно простым способом можно получить эти древние формулы.

— Не могу отказать вам в математическом остроумии, но нахождение вывода старых формул не может подняться до значения самих этих формул. Так что я не вижу, к сожалению, смысла в вашей умственной расточительности ради повторения давно человечеством пройденного.

Пьер Ферма покраснел, потом побледнел, пронизывающе смотря на составленную им таблицу рядов, которую в эту минуту изучал арабский звездочет.

— Простите мне во имя аллаха, мои высокочтимые гости, что я рискую обратить ваше внимание на то, что в составленной молодым гостем таблице я вижу весьма примечательные особенности, которые, надо думать, он подметил и обосновал. Кроме того, можно увидеть, что тройки, вычисленные по древним формулам, не окажутся, как в таблице господина Пьера Ферма, простейшими числами. Произвольно задаваясь величинам m и n, мы получим после вычислений хаотические, беспорядочные, как россыпь разноцветных камней, значения всевозможных прямоугольных треугольников, отнюдь не способствующих выявлению законов их построения.

— Вы правы, уважаемый Мохаммед эль Кашти, таблица троек действительно дает возможность установить некоторые зависимости как в вертикальных рядах, так и в рядах, соседствующих по горизонтали. — И он познакомил слушателей с тем, что открыл.

По просьбе арабского ученого особенно остановился Пьер Ферма на выборе коэффициента #945; и #946; в своих формулах.

— Вас интересует, уважаемый Мохаммед эль Кашти, случай, когда коэффициенты #945; и #946; содержат общий множитель #8730;21? — И он показал с убедительной простотой, что в этом случае получающиеся тройки будут повторять все первые тройки соседних по горизонтали рядов.

— Вы убедили меня, почтенный знаток и поэт чисел. Видит аллах, с каким благоговением я стараюсь вникнуть в найденные вами числа и мудро расставленные по клеткам таблицы, кажущейся мне поистине волшебной. Но я покажу почтенным господам, какие тайны хранит в себе эта простенькая таблица.

— Что же вы обнаружили в ней, уважаемый Мохаммед эль Кашти? Разве я не все понял в собственной работе?

— Конечно, не все, ибо все понятно лишь одному всемогущему аллаху! Но достаточно прикоснуться к математическому сокровищу, чтобы обнаружить в нем…

— Что же? Что? — нетерпеливо торопил арабского звездочета Пьер Ферма.

— Благословенное аллахом золотое сечение! 8 единиц рассекаются на 5 и 3, 13 — на 8 и 5! А эти цифры стоят в таблице поблизости, как и в орнаменте!

Декарт скептически пожал плечами и поморщился. Араб воскликнул:

— Видит аллах справедливый, что вы напрасно так холодны, господин Картезиус! В этой премудрой таблице египетских рядов, как в бездонном колодце, можно черпать сокровища знаний.

20